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Thermodynamic Investigations of Nucleation in Binary Finite
Systens

A thermodynamic analysis of a two-phase system may lead to a
deeper insight into the conditions of @ first ordér phase tran-
sition /1/.°'The knowledge of the exact thermodynamic potential
of the system allows us tg calculate the critical ;nd stable
cluster size for a phase transition /2/, furthermore, critical
thermodynamic constraints for a nucleation process in an one-com-
ponent finite system are determined /2,3/.

Former investigations gave a general thermodynamic analysis
of a heterogeheous k-component system considering Fhe change of
the initial matrix phase by the formation of the new phase /2,
4,5/. These results have been applied mainly to nucleation and
cluster growth in one-component systems /6/, but also the kine-
tics of condensation in binary vapours /7/, the decomposition of
solid solutions /6/, -and Ostwald ripening of bubbles in liguid-
gas solutions /8/ have been discussed based on a thermodynamic
approach, ) '

This paper continues the thermodynamic analysis. As done be-
fore, we consider the limitation of the total particle number
of the system, that means a matrix depletion caused by the for-

mation of clusters of a new phase.

1. Thermodynamics of a heterogeneous binary sysiam

For a homogeneous binary system the inner gnergy is usually gi-
ven by.:

Uhom = TS5 - pVv + My + u,n, (1.1)

In the heterogensous state-we have two phases 4 and f , which
are divided bygboundgary phase, indicated by the index o. The in-
ner energy of the heterogeneous system is then given by /9/:
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Uhet = U& * Ub * Uo . ' (L.2)

with the contributions

.

Up = Ty 8 = paVy + uun]&' * Hg Moy (1.3)
Ug = TFSb - pgVp * Hiphyp * HopN2p (1.4)
Uo = Toso * HigMo * HaoMog t 66 (1.5)

The boundary phase is here assumed to be the Gibbsian surface of
tension /9/, 6'being the surface tension and A the surface area.
Nig and‘SO denote excess values caused by deviations from- addi-
tivity in the heterogeneous state:

Nig M3 - Nig ~ niF i=1,2 (L.6)

Sg = 8- S.-8y (.7

Formally P SU can be interpreted as thermodynamic values of
the surface. For the surfaée energy U0 (eg. 1.5) the Gibbs-Duhem

relation is valid:

SDdT0 + Ad® nlodplo + n200p20 = 0 (1.8)

For a former discussion of the surface part we use the. condition
of an internal equilibrium of both phases o and B /4,10/, that
Means an inner equilibrium and a quasi-stationary change of
these states. Because a surface phase has no real autonomy in
general/11/, we are allowed to replace the intensive variables of
the surface by the correépdnding values of cne of the coexisting
phases o or B It seems to be reasonable that the phase with a
larger density should determine the surface values T and Hy

/4/. We denote in the following the natrlx phase by p and tue
evolving phase by & and assume further o to be the phase with a
higher density (like in gas-liquid phase tran51110n5)

. Eq. (1 8) is then replaced by /4,12/:

-d§ = Sodeu + Flod”loL + FQde/Q (1.9)

with Fio being the surface particle densities and 84 the sur-

face entropy density: N



n; : -5
Pio = ;O , 1=1,2 5 = KE ) . (1‘10)

Considering a heterogeneous system established by a nucleation

process eq. (1.9) means that the surface tension § should be de-
termined by the quantities describing the évolving phése o . In
particulsr we find for the surface tension depéndent on the tem-

perature T, and on the mole fraction x, of the nucleus:
A

Ne | .k Lo My, o
AL % Bl ‘ (10
. 2. . . .
Yy Mg .
ax, T -\Z_,, hio.’T_X,L (1.12)

Consequently, tHe usual approximation ny

0010 results in a depen-
dence of @ on theAtemperature only,>but no longer on the molar

fraction of the nucleus.
In the following we réstrict ourselves to isothermal systems,
that means T, = TB = T, and £ix the thermedynamic consiraints as
follows: ‘

n = const., Vv = const., T = const. (1.13)
Now the free energy F = U - TS is the thermodynamic potential to
describe the heterogeneous system. We calculate the change of
the free energy for a transition from the initial homogeneous to

the tinal hetérogeneous system:

(1.14p

AF = Fret = Fnom
With the restrictions
Ny =0y, + niF + Ny > 1= 1,2 ] (1.15)
Vs v o+ Vg _
and the nota?ion'nL* =Nyt Ny we find for AF uUsing eags.
(1.1)-(1.5) /4,5/: !
; 3 o
£ = (p,- -
AF = (pg-py )V, + A + g‘.d(pu hig) s
“+ (p-p W+ CTREETID T, I . (1.16)
PPy 2& HigTHi/My
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AF (eq. 1.16) is known to be the reversible work of formation
of a nucleus in a initially homogeneous binary system. The terms
(p—pp) and (“ia_”i) consider the change of the medium by the '
formation of the nucleus which is a typical effect for finite
systems /2 &/. .

The Con51stency with GlbbS thermodynamics requireé that the
surface area of the nucleus is unambiguously def}ned by the vo-
lume of the ol-phase: A = A(M*). Calculating the eguilibrium
states from the extremum condition dAF = 0 we find thereiore

the three conditions:

Mig = Hig 1717 (1.17)

Pg, - Pp = G’-E'—C: o 'f (1.18)
It has been shown in a general thermodynamic analysis /5,13/
that the equilibrium states, determined by egs..(1.17), (1.1
should be either states.correspondingt a siable coexistence of
the nucleus  and the surrounding matrix pnaag leading to a mini-
mun of the free energy, or uh#table_equilibrium states of a
saddle-point type. '

2. York of formation for an incompressible binary cluster
. _ ] : ]
in order to calculate the work of formation of the cluster and

the eguilibrium conditions we now make use of the common appro-
ximation of an 1ncomnresnble bphcrlcal cluster /14/. For this.
case an addltlonal relatlon hntween the voiume and the mole
nunoers of ihe nucleus exisis:

T ' : ‘ ,
i (2.1

Ve =5 Tl T VMgt VoM

Since we assume an nearly ideal mixture ol both components (nob
voluine mixing effects), thne speciiic molar volumes Vid of the
two components in the nucleus are expressed by the values for
the pure components v2$. Furthermore, for spherical clusters it
yields DA/ OV, = 26 /1y , Ty being theé cluster radius.

The chemical potential of the o-phase generally depends on
the pressure p, , the moiar fraction Xid of the i-th component

in the nucleus ant the temperasture. A Taylor expansion of Wil
. B i . .
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valid for sufficiently large clusters leads to:
L '
- Lol
“i&(_poL’xd."T) = uiuL(pF’xeL’T) + W [pﬂg pp]+... (2.2)
’ "“?p
Neglecting derivatives of the second order and con51der1ng

(7 i) the work of cluster formation (eg. 1.16) with re-
[bP/_ T)‘.L

spect to egs. (2. l) (2. 7) 18 now obtained as follows:

] 3§ 0
- ??i (“1¢(p$’x1a’ (p?,x ’T)*'g* Vid)nld
+ (D—APP)V + % (ui‘,(p‘,,xi\z,T)—ui(p,xi,T))ni (2.3)

Because of the additional condition (eq. 2.1) we find now from
the extremum condition. dAF = 0 two instead of three equilibrium
conditions for the binary heterogenecus system, given by:

/

26 o N .
“iw(pﬁ’X*’T)'“ip(pP’XP’T)+ T Vig 0 i=1,2 | (2.4)

5
'Finally, we want to specify the chemical potentials of both pha-
ses for a particular heterogeneous system. As mentioned before
the nucleus should represent an incompressible pinary liguid

phase, while the surrounding matrix phase is given by 8 binary

ideal vapour. Thus it yields /12/: N
Mig (Pas X T =y (p 01’”“‘V1,,L( pPo HRILAN £y ) (2.5)
-~ P . ‘ '
- - 13 - T . -
piﬁ(pp,&P,T) “ip(pdi’l)+“rln Ei; + RTlnxg (2.6)

\
Py is chosen to be the partial saturationm pressure of compo-
nent 1 over a flat binary liquid suriace. Xi& and Xip are the

molar fractions of comnonents i in the d- or the PB-phase. In

a binary system it yields x2¢ =1 - X4 - Moreover, due to the
limitation of the total mole number x,_ is a function of the va-
1‘3 -
riables of the nucleus: .
h,> n X,
\ A EEZ_EML‘L. =1 - o 7
Xap ny o S T 1 X2m (2.73
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X, means the molar fraction of the initial homogenzous state:
Xy = nz/n, Xy = l—xz. The fid’are corrections to the mole frac-
tion Xid caused by nonideality effects of the liquid mixture.
For ideal mixtures we have fLL’: 1, but it is easy to consider
also symmetrical mixtures and mixtures of the Margules-type
using special expréssions for the fid‘/lz/. Pp means the actual
vapour pressure in the system. Assuming an ideal vapour we have
n_’v

pg = %z RT = V:%f RT ) (2.8)
Inserting the expressions for the chemical potentials into eq.
(2.4) the equilibrium conditions for a binary hetefugeneous sy~

stem read finmally:

PaX VD { VD
LA ) -9 - 2% ik {o= ' "
].np X b - RT (FJP'DOI) = 1‘0«. RT 1 = 112 (/~'9)

0i%ia i

The eq§.(2.9) represent a generalized form of the Kelvin egua-
tion known to be the equilibrium condition for amone-component
vapour above a curved liquid surface /10,12/. But here the de-
pletion of the vapour caused by the formation of the cluster in
the finite system is considered. Because the vapour pressure Pg
and the molar fraction Xxp both depend on the cluster variables,
more than one solution of the system of equations (2.9) should
exist for the finite binary system. That meané, in addition to
the criticel cluster state a stable coexistence beiween botn

phases siould be possible, dependent on the thermodynamic. con-

straints.

3. Work of tormation for a cluster ih}a quasi-binary solution

with elastic straints _ .

The given results should be applied, now, to a case of practi-
cal importanda: the segregation of a pure component within a
binary supersaturated solid solution /15,16/. Assuming that only
component 2 segregates purely in clusters (xd's X0 1) the molar
fraction of the matrix is given by

N2w |

xg = X2g = e A l"x]s‘:“xlp (3.1)
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with x = nz/n . Instead of the constraints (1.13), we consider
in the following: ’

n = const., p = const., T = const. (3.2)

that\means that the pressure Pp is always equal to the external
pressure p. The thermodynamic potential for the given constraints
(3.2) is the free enthalpy G. The work of cluster formation AG
is found from eg. (2.3) considering pp =

\
AG = (uz&(p Xg0 T)- uzp(p,x‘;,T)Jr 13,: vo FRLIN

i’(um(p x”,f) Hy (p,x ,’”)“i : (3'}?'

replacing now the pressure p = const. by the caoncentration ¢ =

n/V = const. and neglecting a small term of the order nuv{*.p

the differences of the chemical potentials can be expressed in

accordance with egs. (2.5), (2.6) by:
' CXp

Mo, - M ~=- RT 1n (3.4)

D20 2p °28q ”,
. ‘ *p '

ulg\— pl = RT 1n _IT— , “213 - “2 = RT 1n (;(—-) (3.5)

\

CZéq means the saturation concentration of component 2 in the
mateix Wthh depends on tenperatULB as Tollows:

. dc ’
L Zed .9, (3.6)
C2eq RT2

g being the molar solution heat. .
Inserting egs. (3.4), (3.5) in eq. (3.3) we finally arrive .at:

X
AG . B 368 .0 ~r
A = (=In o+ 2 v, )
RT ; c::ch Ty 24 24 A
T X (1_XF) '
}n (3.7)

. B _
c O dn ot e (1-x) In g
Eg., (3.7) takes into account the depletion of component 2 in the
metrix due to the cluster formation by the change of X compared
with x. If this depletion could be neglected as was assumed in
the classical -approximations, Xp = X results and only the first
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contribution to AG (eq. 3.7) remains.

We want to describe in the following the formation of AgCl-clu-
sters in a silver halogenide /natrium borate solution. It should
be realistic for this phase transition to consider also elastic
strains /15,16/. These strains evolve when the matrix building
units (components 1 and 2) change their piaces with these of the
segregating units (component 2) which .move to form fhevcluster,
because the components 1 and 2 have a distinct mean molar volume.
Assuming a spherical cluster phase o with an elastic modulus E
and a Poisson number ¥ similar to the P -phase, the elastic
strains can be described by egquations of the Nabarro type /l/,
that means the worK of cluster formation eq. (3.7) is completed

by an additional term ‘
Ac® = €V, = ¢ Vgl HZ; (3.8)

which reflects the elastic‘enepgy, ¢ being

PRI LI
7a-p ¢ A
V stands for the mean molar volume of the considered phase. It
) yields:
- _ .0
Vo = Vg
VooNgm Vo N
- 1P 1B 2B 2B PR 2
Vg = — = v, (1-Xg)+V,pu,X o (3.9)
B ME*2p 1B B TY2pTe

Assuming an ideal mixture, the partial molar volumes vi,‘s of the
%—phase are given by the corresponding values of the pure com-
ponents, V?B , in the F«phase. Further, we note, that the mo-

lar fraction of thne segregédting component is pather small in the

considered case, x = 0.02. Theretfore we can approximate:

o 0

vy v,
iu w vl Sa—iB_fk - (3.10)
i * N ' '

The influence of the elastic energy on the work of cluster for-
mation is presented in Fig. 1 by the difference between the cur-
ves (b) and (¢). It is snown that in the presence of elastic

strains the nucleation barrier (maximum of AG) increases, fur-
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Fig. 1:

6 - Free enthalpy AG (kgT)
(eq. 3.7) vs. cluster ra-
dius r (nm)

(a) neglecting depletion
(XB=x), (b) considering
depletion, (c¢) conside-

(@)

ring depletion and ela-

stic strains (eg. 3.8)

_12 — I
-0 03 06 09 12
—_— [nm]
The calculation was carried gut for a silver halogenide/nqtrium‘
borate solution, x(AgCl) = 0.02, T =820 K, ¢-= 7-107 N/mz, total
particle number N = 104, c = 3,48-104 mol/m3

thermore, the critical cluster size increases tooc, and the
stable cluster size indicated by a minimum of AG, decreases.
The difference -between the curves- (a) and (b) demonstrates that
a stable state is obtained only if the depletion of the segre-
gating particles is considared. In the case X =X We find only
a critical cluster size which is smaller than before, and-a
lower nucleation barrvier.

The influerce of the elastic strains on the equilibrium states
of the cluster shall be further discussed. By means of the ex-
tremum condition QﬂﬁG/’aﬁZL = 0 we find the equilibrium condi-
tion:

Q 0 ‘
CcX v v
] 2 260 2
in Cooq 1) €7 r, BT -0 (3.11)

The value y = CXB/CZGa gives a measure of the. actual supersatu-
ration of component 2 in the system. Because XP depends on Y
(eg. 3.1), we find two solutions of the equilibrium condition in
z certain range 6f the temperature. Fig. 2 demonstrates the in-
fluence of the elastic strains on these states. For a given tem-

perature the smaller value of tihe radius corresponds. to the cri- .
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Fig. 2% Critical (---) and stable (——) cluster radius (nm) vs.

temperature (K), (a) € = 7.107 N/m2, (b) £=0

TC is obtained as (a) B24 K, (b) 882 K

For the parameters see Fig. 1.
tical cluster size, while the larger value gives the stable
cluster size. It is shown that the elastlic strains decrease the
stable cluster size and increase the critical cluster size.
That means, in the~presehce of elastic strains the initial su-
peréaturation in the system, given by the ratio CX/CZeq’ should
be larger to form a cluster of the same critical size as in the
case € = 0. ‘ . o _

The intersection of the stable and the critical cluster size

" for a certain temperature TC indicates the smallest stable clu-
ster in' equilibrium with the surrounding phase. For T >TC a
phase coexistence is thermodynsmipally impossible, that means
for given const{ains n = const., x = const., TC is the upper
limit of the temperature where a phase transition can occur in
the system. This critical temperature for the phase transition
depends on the value of the elastic strains as shown in Fig. 2.
TC becomes considerably smaller in the presence of elastic
strains. This fact should be important for the determination of
the appropriate values of the thermodynamic constraints for the
phase transition in a binary solid solution.
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